Week 1 : Simple manipulators: Two /three arm manipulators and their kinematics equations, Work space Homogeneous Transformation: Rotation, Translation, Composition of homogeneous transformations
Week 2 : Danavit-Hartimber Algorithm: D-H procedure for fixing joint coordinate frames, Robot parameters, Arm matrix, Inverse Kinematics for PUMA, SCARA manipulators.
Week 3 : Introduction to Robotic Exoskeletons,Optimal Design of a Three Finger Exoskeleton for Rehabilitation Purpose
Week 4 : Differential transformation and velocity of a frame: Derivative of a frame, Velocity, Jacobian, Inverse Jacobian, Trajectory Planning: Polynomial trajectory, Biped trajectory
Week 5 : Dynamics: Lagrangian method, Robot dynamics equation,Control: Robot dynamics equation as a control system, Trajectory tracking control, PD controller, Neural network control design
Week 6 : Redundancy Resolution of Human Fingers using Robotic Principles,Manipulability Analysis of Human Fingers during Coordinated Object Rotation,Kinematics of Flexible Link Robots,
Week 7 : Robot Assisted Needling System for Percutaneous Intervention-An Introduction,Smart Robotic Needles for Percutaneous Cancerous Interventions
Week 8 : Robust Force Control of a Two Finger Exoskeleton during Grasping ,Neural Control of an Index Finger Exoskeleton – Lecture 1,Neural Control of an Index Finger Exoskeleton – Lecture 2
DOWNLOAD APP
FOLLOW US