X

Environmental Chemistry

By Prof. Bhanu Prakash Vellanki   |   IIT Roorkee
Learners enrolled: 995   |  Exam registration: 45
ABOUT THE COURSE:
The course deals with the fundamentals and critical analysis of chemical processes one encounters in the field of Environmental Engineering. The course deals with:
  • Application of equilibrium equations and material balance equations to calculate conditions in environmental systems at equilibrium using the concept of components.
  • Use of chemical equilibrium programs such as VMINTEQ to calculate conditions in environmental systems at equilibrium
  • Application of kinetic equations, stoichiometric relationships and material balances to calculate conditions in environmental systems in which reactions occur that are not at equilibrium.
  • Application of fundamental aspects of thermodynamics to describe equilibrium conditions in environmental systems. 
  • Defining equilibrium and kinetic limitations as relating to environmental systems and the relative importance of each for chemical processes in environmental systems. 
  • Knowledge of important terminology for chemical processes occurring in environmental systems


INTENDED AUDIENCE : 
Environmental engineering professionals and students pursuing a degree with emphasis in Environmental engineering

PREREQUISITES : Entry level chemistry course

INDUSTRIES  SUPPORT : CPCB, SPCB, Degremont, ERM, Ramky Enviro Engineers, Veolia Water, SFC Environmental Technologies Pvt. Ltd., Nalco Water, VA Tech Wabag, Ther
ABOUT THE COURSE:
Summary
Course Status : Completed
Course Type : Core
Duration : 12 weeks
Category :
  • Civil Engineering
  • Environment
Credit Points : 3
Level : Postgraduate
Start Date : 24 Jul 2023
End Date : 13 Oct 2023
Enrollment Ends : 07 Aug 2023
Exam Registration Ends : 18 Aug 2023
Exam Date : 29 Oct 2023 IST

Note: This exam date is subject to change based on seat availability. You can check final exam date on your hall ticket.


Page Visits



Course layout

Week 1
I. Introduction
II. Fundamentals of chemical processes
  • Introduction 
  • Equilibrium 
  1. Introduction (importance, definitions)
  2. Gibbs free energy 
  3. Phase Equilibrium
  4. Equilibrium Models
Week 2
  1. Generalized Approach
  • Kinetics 
  1. Reactions
  2. Reactors
Week 3:
  1. Determination of rate equation
  • Requirements
  • Approaches
  • Regression
III. Acid/Base Reactions 
  • Introduction (importance, terminology)
  • Kinetics
  • Equilibrium
  1. Single Reaction
Week 4
  • Ionization Fractions
  1. Models (multiple reactions)
  • Recipe problems
  • Inverse Problems
  • Computer solutions (VMINTEQ)

Week 5
  1. Log C-pH Graphs
  • Introduction
  • Preparation
  • Example
  1. Carbonate System
  • Introduction
  • Closed system
  • Open system
  1. Equivalence Point
  2. Buffer
  • Introduction
  • Application by VMINTEQ

Week 6
  • Buffer Intensity at various pH ranges 
  • Design of Buffers
  1. Alkalinity, acidity
  • Definitions
  • Acidity
  • Multiple Equivalence Points

Week 7
  • Relationship among ALK,ACD, Ct,co3
  • Mixing Problems
  • Conservative quantities
  • Example: Complex Acid/Base Problems

Week 8
IV. Aqueous Complex Formation 
  • Introduction
  • Kinetics
  • Equilibrium
  1. Equilibrium Coefficients
  2. Strength of complexes
  3. Models
V. Precipitation 
A.     Introduction
B.     Kinetics

Week 9
  1. Steps
  • Ostwald
  • More crystalline, less soluble
  1. Controlling precipitation
  • Promoting precipitation
  • Inhibiting precipitation
C.   Equilibrium
  1. Coefficients
  2. Important concepts
  3. Models
Week 10
  1. Competitive Precipitation
  2. Predominance Area Diagram
  3. Calcium carbonate precipitation
VI. Oxidation/Reduction 
A. Introduction
  1. Terminology
  2. Applications
  3. Balancing Redox Reactions
B. Kinetics
  1. Importance
  2. Models

Week 11
C. Equilibrium
  1. Introduction
  2. Alternatives for reaction feasibility
  • Q/K approach 
  • pe approach
Week 12
  • Eh approach
  1. Oxidation-Reduction Potential (ORP) Measurement
  2. Predominance Area Diagrams
  3. Corrosion

Books and references

  1. Water Chemistry, M. Benjamin, Waveland Press, Long Grove, Illinois, 2010 (ISBN 1577666674) ,
  2. Water Chemistry: An Introduction to the Chemistry of Natural and Engineered Aquatic Systems, Patrick L. Brezonik, William A. Arnold, Oxford University Press, New York, 2011,
  3. Aquatic Chemistry, 3rd Edition, W. Stumm, J.J. Morgan, John Wiley and Sons, New York, 1996. 4- Aquatic Surface Chemistry, W. Stumm (Ed), John Wiley and Sons, New York, 1987.

Instructor bio

Prof. Bhanu Prakash Vellanki

IIT Roorkee
Dr. Bhanu Prakash Vellanki, is an Assistant Professor at IIT Roorkee. He holds a PhD in Civil Engineering with a specialization in Environmental Engineering from Texas A&M University. During the course of his doctoral work, Dr. Vellanki developed a new class of treatment processes, called the Advanced Reduction Processes. His research interests include Advanced Redox Processes, industrial/hazardous waste treatment, and emerging contaminants.

Course certificate

The course is free to enroll and learn from. But if you want a certificate, you have to register and write the proctored exam conducted by us in person at any of the designated exam centres.
The exam is optional for a fee of Rs 1000/- (Rupees one thousand only).
Date and Time of Exams: 
29 October 2023 Morning session 9am to 12 noon; Afternoon Session 2pm to 5pm.
Registration url: Announcements will be made when the registration form is open for registrations.
The online registration form has to be filled and the certification exam fee needs to be paid. More details will be made available when the exam registration form is published. If there are any changes, it will be mentioned then.
Please check the form for more details on the cities where the exams will be held, the conditions you agree to when you fill the form etc.

CRITERIA TO GET A CERTIFICATE

Average assignment score = 25% of average of best 8 assignments out of the total 12 assignments given in the course.
Exam score = 75% of the proctored certification exam score out of 100

Final score = Average assignment score + Exam score

YOU WILL BE ELIGIBLE FOR A CERTIFICATE ONLY IF AVERAGE ASSIGNMENT SCORE >=10/25 AND EXAM SCORE >= 30/75. If one of the 2 criteria is not met, you will not get the certificate even if the Final score >= 40/100.

Certificate will have your name, photograph and the score in the final exam with the breakup.It will have the logos of NPTEL and IIT Roorkee.It will be e-verifiable at nptel.ac.in/noc.

Only the e-certificate will be made available. Hard copies will not be dispatched.

Once again, thanks for your interest in our online courses and certification. Happy learning.

- NPTEL team


MHRD logo Swayam logo

DOWNLOAD APP

Goto google play store

FOLLOW US