Week 1: INTRODUCTION
• Outline of the course; Course objectives; Learning outcomes; Course plan
• Expressing a result as a mean (nominal) value and its uncertainty at a specified confidence level
• Importance of uncertainty analysis in research, industry, legal metrology, education
• Developments in uncertainty analysis, ASME PTC 19.1 and ISO JCGM-100 GUM
• The approach to uncertainty analysis
Week 2: ERROR, UNCERTAINTY
• The result relation, measured parameters
• Error distribution, statistical basis, standard uncertainty, definition of uncertainty and its variants
• Classification of errors as per ASME PTC 19.1 and ISO GUM; Correlated/Uncorrelated errors
Week 3: EXPERIMENTATION
• Processes from need for data (for decision making) to obtaining the data
• Options for conducting an experiment
• Stages / Phases of experimentation, test execution, pre-test and post-test activities
• Relevance of uncertainty analysis in the experimentation processes
Week 4: UNCERTIANTY IN A MEASURMENT – I (FUNDAMENTALS)
• Measured parameters (measurands) and raw data. Calculated parameters (result)
• Sources of errors in a measurement – elemental sources of error; classification as random/systematic or Type A/Type B
• Calculating/estimating elemental sources of errors in a measurement
• Calculating combined standard uncertainty and expanded uncertainty in a measurement
Week 5: UNCERTIANTY IN A MEASURMENT – II (SPECIAL CASES)
• Systematic uncertainty in a measurement: Instrument specification, Data from handbook,Tolerance limits, Absolute limits, Asymmetric bounds
• Systematic uncertainty in a measurement: Physical basis of phenomenon, e.g. zero error,calibration, time lag, spatial lag, radiation effects in temperature measurement, long-term effects (stresses in strain gauges, etc.)
• Errors in electronics and digitization – Amplification, filtering, analog-to-digital conversion
Week 6: UNCERTIANTY IN A RESULT – I (FUNDAMENTALS)
• The result formula, Taylor Series Method (TSM). Expansion of results formula. 1st order with un-correlated errors. Sum of squares relation
• Sensitivity coefficient. Relative uncertainty coefficient. Uncertainty Multiplication Factors(UMF).
• Uncertainty in the result. Contribution from different measurements, dominant uncertainty. Uncertainty Percentage Contribution (UPC)
Week 7: UNCERTIANTY IN A RESULT – II (SPECIAL CASES)
• Techniques for evaluating sensitivity coefficient, Single variate property, double variate property
• Contribution by measurement uncertainties to result uncertainty, Pareto chart
• Application to pre-test uncertainty analysis
Week 8: DATA ANALYSIS AND REPORTING
• Round-off in reporting mean (nominal) values and uncertainty
• Round-off in reporting mean (nominal) values and uncertainty in measurements and in result
• Data comparison. Introduction to correlations – techniques, goodness
• Depicting uncertainty on plots, e.g. uncertainty bands/bars. Whisker plots
• Course summary. Recommendations for further study
DOWNLOAD APP
FOLLOW US